HW09 - VB

① This is a preview of the published version of the quiz

Started: Oct 21 at 11:17am

Quiz Instructions

Homework 09 - VB

Question 1	3 pts
Which of the following combinations of hybridization and molecular geometry is possible?	
○ sp², linear	
sp ² , tetrahedral	
sp ³ d, octahedral	
sp ³ , trigonal pyramidal	
Question 2	3 pts
The sp ³ hybridization has what percent s character and what percent p character respectively?	
25%, 75%	
50%, 50%	
75%, 25%	
33%, 67%	
Question 3	3 pts
What hybridization would you expect for Se when it is found in SeO ₄ ²⁻ ?	
\bigcirc sp 3 d 2	
○ sp³d	
○ sp ³	
○ sp ²	
Question 4	4 pts

Question 5	4 pts
What hybridization would you expect for C in ethyne (C_2H_2) ?	
\bigcirc sp ²	
○ sp ³	
○ sp³d	
○ sp	

Question 6	3 pts
sp ² hybrid orbitals have	
tetrahedral symmetry.	
○ linear symmetry.	
○ trigonal planar symmetry.	
trigonal pyramidal symmetry.	

Question 7	3 pts
A sigma bond	
may exist alone or in conjunction with a pi bond.	
is composed of non-bonding orbitals.	
always exists in conjunction with a pi bond.	
is always polar.	

Question 8	:	3 pts
In a new compound, it is found that the central carbon atom is sp ² hybridized. This implies that		
carbon has four regions of high electron density.		
carbon is also involved in a pi bond.		
carbon has four lone pairs of electrons.		
o carbon has four sigma bonds.		
o carbon has a tetrahedral electronic geometry.		
Question 9		4 pts
		4 pts
Question 9 In the molecule, C_2H_4 , what are the atomic orbitals that participate in forming the sigma bond between the C and $H: sp^2, C: sp^2$		4 pts
In the molecule, C_2H_4 , what are the atomic orbitals that participate in forming the sigma bond between the C and		4 pts
In the molecule, C_2H_4 , what are the atomic orbitals that participate in forming the sigma bond between the C and \bigcirc H: sp ² , C: sp ²		4 pts
In the molecule, C_2H_4 , what are the atomic orbitals that participate in forming the sigma bond between the C and $H: sp^2, C: sp^2$ $H: 2p, C: sp^3$		4 pts
In the molecule, C ₂ H ₄ , what are the atomic orbitals that participate in forming the sigma bond between the C and H: sp ² , C: sp ² H: 2p, C: sp ³ H: 1s, C: sp		4 pts
In the molecule, C ₂ H ₄ , what are the atomic orbitals that participate in forming the sigma bond between the C and H: sp ² , C: sp ² H: 2p, C: sp ³ H: 1s, C: sp H: 1s, C: 2p		4 pts

o stems from sp hybridization of orbitals.